Sr. No	Paper Title	Abstract
		This paper explores the possibility to monitor structural deformations
		by means of grids of antennas. Deformations, occurring in engineering
		structures due to unexpected loading conditions and to obsolescence,
		may lead to potentially dangerous events, especially in critical
		environments such as aerospace platforms or civil infrastructures. By
		engineering the electromagnetic interaction among the elements of a
		grid of UHF Radiofrequency Identification (RFID) tags, it is possible to
		extract various measurable indicators useful to track the local as well
	RFID-Grids for	the overall deformation of the body on which the antennas are
1	Deformation Sensing	attached on, and hence to monitor the "health" of sensitive structures.
		Multiple tags in Radio Frequency Identification (RFID) systems are
		scheduled by a medium access control layer using the Framed Slotted
		Aloha (FSA) or binary tree protocol. The focus of our research is on FSA
		and passive Ultra High Frequency (UHF) RFID. In current standards,
		only one tag can be acknowledged per slot. In this work we propose
		the increase of the theoretical throughput of FSA RFID systems with
		multiple antennas for physical layer collision recovery by
		acknowledging two tags per slot. The expected throughput increase is
		approximately 5.03 times the throughput of a conventional reader. In
		order to profit of such increase we propose a method for channel
		estimation with a modified tag response, a so-called "postpreamble".
	Channel Estimation in	The influence of the channel estimation on the performance is
2	Tag Collision Scenarios	Investigated through simulations.
		An active MOS diode for low voltage and low power RFID rectifiers is
		presented. The diode is based on the technique with internal threshold concellation (ITC) for MOS diodes and uses a simple control.
		scheme to minimize the diode reverse leakage so that full threshold
		cancellation is achieved. A theoretical background that illustrates the
		limitations with the ITC diode and a detailed presentation of the
		proposed diode with a short design procedure is included. The
		proposed diode is implemented in AMS 0.35 1 ¹ / ₄ m CMOS and simulated
		in Cadense Spectre in a single diode rectifier. With a diode voltage
		ranging from 50 to 100 mV, the proposed diode simultaneously
	An Active MOS Diode	demonstrates improved voltage and power conversion efficiency of
	with Vth-Cancellation	more than 20 % each for frequencies up to 1 MHz, as compared to the
3	for RFID Rectifiers	MOS diode with internal threshold cancellation.
		This paper presents a passive multistandard HF/ UHF-RFID tag
		implemented in a 0.13um bulk CMOS process. The RFID-tag consists of
		a multi-standard HF/ UHF frontend for both frequency bands at
		13.56MHz and around 900MHz. The tag is enhanced with additional
		functionality for sensing and localization. The integrated sensor
	A Multistandard HF/	interface consists of a multiplexer, a temperature sensor and an ultra-
	UHF-RFID-Tag With	low power SAR analog-to-digital converter, which features a sampling
	Integrated Sensor	rate of 100kHz at a power consumption of less than 700nW.
	Interface and	Additionally the tag supports its localization through an FMCW-radar
4	Localization Capability	working at 2.45GHz

		The chipless RFID tag presented exploits the advantage offered by
		polarization diversity to encode more information within a given
		surface size. It is based on 3 split ring resonators with variable gap
		configuration. Depending on the used linear polarization, different
		resonant modes can be measured for the same resonator so that the
		coding canacity is increased. Since the used structure is very sensitive
		to polarization angle this interesting behavior can be used to detect a
		to polarization angle, this interesting behavior can be used to detect a rotation angle of an item with 20° of accuracy. On the other hand
		rotation angle of an item with 20A of accuracy. On the other name,
		contrary to most of chipless tags that need UWB operating
		frequencies, the proposed tag is based on diversity polarization and
	A Compact Chipless	only narrow frequency bands are needed. Using only 3 resonant
	RFID Tag Using	frequencies in the 3.4 GHz to 7.1 GHz band, a capacity of coding of 6
	Polarization Diversity	bits is reached within a tag of size 3x3 cmA ² . Measurements done
	for Encoding and	using a bi-static radar configuration in the frequency domain validate
5	Sensing	this new concept.
		Automatic goods inventory on the shelf is an important Ultra High
		Frequency (UHF) Radio Frequency Identification (RFID) application.
		Compared to other applications, it has some unique requirements: 1)
		Confined read region to avoid the cross reads to other layers and
		shelves; 2) Positioning capability to identify the placed layer for each
		goods; 3) Low total system cost to support shelves with different
		variants. In this paper, an innovative low cost solution is proposed for
		the RFID shelf. It mainly contains two key technologies. First, a special
		shelf antenna is designed. It can provide the confined read region on
		each layer. Also it provides the possibility to connect 5 cascaded
		antennae to one antenna port of the reader. Second, a phase
		difference measurement based tag filtering method is proposed to
		determine the placed layer for each goods covered by the cascaded
		antennae. This solution can significantly reduce the system cost due to
		the following reasons. 1) Much less readers are needed; 2) The RF
		cable connections are much simpler; 3) By cascading the basic
	UHF RFID Shelf	antennae, the new antenna with different length can be constructed
	Solution with	to support different shelves. A prototype was developed to prove the
	Cascaded Reader	proposed solution. According to the measurement results, the shelf
	Antenna and	antenna can provide the confined reading for each layer. 100% layer
6	Positioning Capability	level positioning accuracy was obtained by the tag filtering method.
		Passive UHF RFID tags, beside item labelling, are also able to exploit
		capability of sensing the physical state of the tagged object as well as
		of the surrounding environment. Here a family of polymer-doped tags
		are proposed and fully characterized for the detection of ambient
		humidity. A sensitive chemical species based on PFDOT:PSS is used to
		dope a properly shaped slot carved into a folded-like patch tag. The
		communication and sensing capabilities of the radio-sensor are
		investigated by means of simulation and measurements showing how
		to control and balance above opposite requirements by dosing the
	Polymer-Doned LIHE	quantity of sensitive material. The device could have interesting
	RFID Tag for Wireless-	application in the assessment of the air quality in living and controlled
-	Sensing of Humidity	rooms in the monitoring of the conservation state of foods in the
· /	Jensing of Hulfluity	i tooms, in the monitoring of the conservation state of toous, in the

		preservation of walls, and even to monitor the healing degree of wounds.
8	Enabling Standardized Cryptography on Ultra-Constrained 4- bit Microcontrollers	4-bit microcontrollers (MCUs) are among the simplest, cheapest and most abundant computing devices that, thanks to their low power consumption, may be deployed even in passive RFID tags. Besides, 4- bit MCUs are embedded in a wide variety of daily-life objects that, when connected to a network, could become a substantial part of the Internet of Things. Despite the fact that quite a number of applications are security sensitive, no implementation of standardized cryptography has been available yet. In this work we present the first implementation of the Advanced Encryption Standard (AES) on a 4-bit MCU and thus, by closing this gap, enable security functionalities on myriads of legacy devices. Besides, we describe the first software implementation of PRINTcipher, a recently proposed block cipher optimized for printed electronics. We describe and apply various optimization techniques to develop time and code-size efficient implementations on the MARC4. As a result we gain the most energy efficient implementations of a cryptographic algorithm on a 4-bit MCU.
		A maximum-likelihood range estimator is analyzed for use in a passive RFID system that already uses power-optimized waveforms (POWs) for an increase in energy-harvesting efficiency. Such a range estimator assumes that POWs are transmitted to the tag, which experiences a range and reliability improvement. The backscattered signal from the tag includes the POW as a carrier of tag data. The interferers in the system are multipath components and noise. The charge pump of the
	Range Estimation for Passive RFID Systems	tag may also induce nonlinear distortion of the impinging POW. It is shown in this paper that each of these sources of interference may be
	That Use Power-	accounted for in theoretical models of the uncertainty and bias of the
9	Optimized Waveforms	estimator.

		Options for RFID tag tracking and localization are an essential asset for future high performance RFID reader systems. A reader with long reading range, high reading rate and multi-tag capability should be able to assist the user to find / retrieve tags, to create spatial object maps and to restrict the reading range to specific regions of interest. In this paper we introduce a novel method for RFID tag tracking with a moving - for example handheld - reader. An inertial measurement unit (IMU) is used to characterize the handheld trajectory. Contrary to approaches where IMU locations are reconstructed via double integration of the acceleration data, our novel technique only uses acceleration data without knowledge of the actual antenna locations. Inexpensive, standard inertial sensors can be used in this approach, and the usual drift and offset issues associated with IMU-based positioning are avoided. Parallel to the IMU acceleration data, the phase of the backscattered RFID signal is input. Double differentiation of the signal phase yields a second acceleration data set. By comparing
		the IMU and the RFID signal phase acceleration data, the direction of arrival of the RFID signal is estimated using a quasi-spatial optimal
	A Novel Method for	filter. This paper introduces the novel RFID tracking approach and illustrates its canability with numerical simulations and experimental
	UHF RFID Tag Tracking	results. This novel approach is a simple, yet promising, solution which
10	Based on Acceleration	can be implemented in any handheld reader and will improve its functionality considerably
10		Due to the high sensitivity of RFID tag-reader performance to the
11	An Adaptive Data Cleaning Scheme for Reducing False Negative reads in RFID Data Streams	operating environment, RFID data streams generated are unreliable and contain a significant amount of missed readings. RFID data cleaning is therefore an essential task for successful deployment of RFID systems. One of the common techniques used by RFID middleware systems to compensate for the missed readings is the use of sliding-window filters. However, setting an optimum window size is non-trivial task especially in mobile tag environments. In this paper we present a new adaptive data cleaning scheme called WSTD based on some of the concepts proposed in SMURF but with an improved transition detection mechanism. WSTD uses the comparison of the two window sub-range observations or estimated tag counts to detect when transitions occur within a window. In the mobile environment, our experimental results show that the WSTD scheme performs better than SMURF producing an improvement of about 30% less overall errors than that produced by SMURF.
	Two-Level Path Authentication in	In this paper, we propose a two-level path authentication protocol for object genuineness verification in RFID-based supply chain and EPCglobal Network. In our solution, a tag's path in a supply chain can be generated dynamically, where each reader in the path can verify the validation of the path using its own private key. Our solution has a few promising properties, including dynamic path generation, distributed authentication, and scalability. In comparison, the previous path authentication solution for RFID tags is focused on static path
12	EPCglobal Network	generation and centralized control. The efficiency of our path

		authentication protocol is enhanced significantly by dividing a whole path into multiple segments according to organization structures. The security and privacy of our protocol are established based on two cryptographic primitives, hierarchical identity-based encryption and batch verification signature.
13	Modulation Silencing: Novel RFID Anti- Collision Resolution for Passive Tags	RFID technology has been gaining popularity in several automated inventory management applications. In such applications, thousands of RFID tags are attached to different products and the reader(s) will be collecting tags IDs using an arbitration protocols. In the existing tag arbitration protocols, significant time and power are consumed on inevitable tag collisions. In this paper, collision time reduction mechanism, called Modulation Silencing Mechanism (MSM) is proposed. MSM accelerates ending of collision slots by allowing the collided tags to interpret the silencing feedback from the reader and stop their backscattering. The proposed mechanism achieves a considerable reduction in collision time; hence, we proposed a new generalized performance metric to consider the shorter duration of collision slots by MSM. In addition, we evaluate the main RFID arbitration protocols after applying MSM and the time efficiency of these protocols was significantly increased.
		In this paper, we describe a novel passive RFID system capable of direct tag-to-tag communication in the presence of external radio
14	Passive Tag-to-Tag Communication	frequency field. Tags talk by modulating the external field and thus backscattering the commands to each other. We present the system concept and show its hardware implementation based on TI MSP430 microcontroller. We also provide the theoretical model for modulation depth vs. distance which agrees with experimental results (maximum tag-to-tag communication distance). Finally, we discuss possible applications and outline future work.
15	Multi-Antenna Techniques for Enabling Passive RFID Tags and Sensors at Microwave Erequencies	Multi-antenna techniques are typically avoided in passive RFID because of the large footprints required. However, the smaller footprints required at microwave frequencies such as the 5.8~GHz industrial, scientific, and medical (ISM) band allow the use of multiple antennas. Two new multi-antenna technologies are featured in this paper to provide power and communications to a passive wireless tag in the 5.8~GHz ISM band. A four-layer FR-4 PCB is presented, which uses a staggered-pattern charge collector (SPCC) and a retrodirective array phase modulator (RAPM). An SPCC is an energy harvester that has with two independent antenna arrays that provide increased gain and beamwidth over a single-antenna source. A RAPM backscatters the reader-transmitted signal directly back to the reader and provides quadrature phase-shift keved (QPSK) signaling

		This paper introduces a real-time localization system (RTLS) using
		efficient multiple propagation models to compensate for the drawback
		of the received signal strength technique. The RTLS is implemented on
		an active RFID system and uses received signal strength
		measurements and reference tags for ranging. The RTLS is
		implemented purely in software that post processes the received
		signal strength data from the reader and does not require any
		additional hardware or any modifications to the RFID reader or tags.
		The proposed algorithm using multiple propagation models improves
		the performance of the RTLS. Two-dimensional localization results are
		given for a four-reader system covering a 4.5 by 5.5 meter room. The
		scenarios of both single tag and two tags for the tag object are
		developed. It has been proven that tag multiplicity, two tags for the
		target object, improves the performance of the system by reducing
		inaccurate received signal strength measurements due to poor tag
		orientation. Experimental results show that the proposed system
	A Real-time RFID	achieves a localization accuracy within 1 meter in over 50 percent of
	Localization	the experiments and outperforms other comparable systems.
	Experiment Using	Currently developed three-dimensional space extension research is
16	Propagation Models	discussed and results are presented.
		Identifying and authenticating RFID tags based on their inherent signal
		features can be another level of security on top of the traditional way
		of demonstrating knowledge of a secret key. Authenticating tags
		based on their knowledge of a key has its drawbacks. First, the tag is
		assumed to be secure enough that it can hold the secret key without
		disclosing it to any other party. However, side-channel attacks on such
		devices have been successful. In addition, the tag is assumed to have
		the memory and processing capabilities to implement cryptographic
		operations. However, this increases the cost of the tag. In this work,
		passive UHF RFID tags are identified by their signal features. The
		backscattered signal is recorded and a set of features based on timing
		and power are extracted. Timing features at different Tari durations
	Identifying Passive	that correspond to different data rates were found to be effective
	UHF RFID Tags Using	features. In the population of measured tags, the tag manufacturer
	Signal Features at	was identified with an accuracy of 100% when using timing. An
	Different Tari	individual tag was identified with an accuracy of 97.22% when using
17	Durations	timing.

		Radio Frequency Identification (RFID) technology become an
		important tool for items identification and tracking. In this paper we
		observe RFID Gen2 communication protocol [1] between the RFID
		reader and the low-cost battery free passive REID tags. To establish
		communication between reader and tags. Gen2 uses Dynamic Frame
		Contraction between reduce and tags, Genz uses Dynamic frame
		Siotled ALOHA (DFSA) Medium Access Control (MAC) layer protocol
		with Q-Selection algorithm for frame length adaptation. DFSA
		constraints of Gen2 RFID Reader-Tag communication may become an
		issue in the fast identification of all tags in the interrogation area. To
		identify all tags as soon as possible, DFSA frame length should be
		selected properly so its throughput is maximized, and that can be
		achieved only if one can estimate number of interrogated tags
	Linearized	correctly. In this paper we present Linearized Combinatorial Model
	Combinatorial Model	(ICM) algorithm for the optimal frame length adaptation. Developed
		(LCIVI) algorithm for the optimal name length adaptation. Developed
	for Optimal Frame	scheme is implemented and tested on Universal Radio Serial
	Selection in Gen2 RFID	Peripheral 1 (USRP1) Gen2 reader application [2]. Results analysis
18	System	shows that our scheme outperforms Q-Selection algorithm.
		Physical objects often form a group such as objects in a shipping
		container. RFID enables us to identify each object and even the
		container itself. However, current RFID does not provide information
		on IDs missing from a group. This paper proposes a method to
		determine the unique IDs of objects missing from a group without any
		external database or verifier. The proposed method logically splits a
		group into mutually overlapped sub-groups and writes group-related
		information which is generated from the unique IDs of objects in the
		sub group to PE tags' memory. When we check the integrity of a
		sub- group, to RF tags memory. When we check the integrity of a
		group of objects, unique IDs and group-related information of RF tags
		are extracted from RF tags memory. With an iterative decoding over
		group-related information with the unique IDs of identified objects,
		missing IDs are determined. A numerical simulation reveals that the
		proposed method can identify 96-bit unique IDs of up to 64 objects
		missing from a group composed of 100 objects by writing 840-bit
		group-related information to each RF tag. We also examined the
		performance with an experiment and confirmed that we can
	Identification of	successfully determine 16-bit IDs of up to 12 missing RE tags from a
	missing objects with	group of 20 PE tags by writing 220 bit group related information to
		group of 20 KF tags by writing 280-bit group-related information to
10	group couling of KF	each RF lag. The experiment results agree well with the humerical
19	tags	
		in this paper, we present for the first time a novel optimization
		procedure which allows to maximize the efficiency of RF-DC energy
		harvester converters, taking into account the contributions of the
		matching network. Thanks to this procedure, we have designed and
	Optimized CMOS RF-	realized a CMOS RF-DC converter operating in a very wide range of
	DC converters for	input power -14Ã+1dBm with a peak efficiency of 45%. The RF-DC
	remote wireless	converter provides a constant output voltage $\sim 2V$ in the whole input
	powering of RFID	power range thanks to a smart voltage regulator integrated with the
20	annlications	converter
20	applications	

21	An Error Free Passive UHF RFID System using a New Form of Wireless Signal Distribution	A wide area and error free ultra high frequency (UHF) radio frequency identification (RFID) interrogation system based on the use of multiple antennas used in cooperation to provide high quality ubiquitous coverage, is presented. The system uses an intelligent distributed antenna system (DAS) whereby two or more spatially separated transmit and receive antenna pairs are used to allow greatly improved multiple tag identification performance over wide areas. The system is shown to increase the read accuracy of 115 passive UHF RFID tags to 100% from <60% over a 10 m x 8 m open plan office area. The returned signal strength of the tag backscatter signals is also increased by an average of 10dB and 17dB over an area of 10m x 8m and 10m x 4m respectively. Furthermore, it is shown that the DAS RFID system has improved immunity to tag orientation. Finally, the new system is also shown to increase the tag read speed/rate of a population of tags compared with a conventional RFID system.
		RFID is a technology that enables the automated capture of observations of uniquely identified physical objects as they move through supply chains. Discovery Services provide links to repositories that have traceability information about specific physical objects. Each supply chain party publishes records to a Discovery Service to create such links and also specifies access control policies to restrict who has visibility of link information, since it is commercially sensitive and could reveal inventory levels, flow patterns, trading relationships, etc.
		The requirement of being able to share information on a need-to- know basis, e.g. within the specific chain of custody of an individual object, poses a particular challenge for authorization and access control, because in many supply chain situations the information owner might not have sufficient knowledge about all the companies who should be authorized to view the information, because the path taken by an individual physical object only emerges over time, rather than being fully pre-determined at the time of manufacture. This led us to consider novel approaches to delegate trust and to control access to information.
22	Assessment of Visibility Restriction Mechanisms for RFID Data Discovery Services	This paper presents an assessment of visibility restriction mechanisms for Discovery Services capable of handling emergent object paths. We compare three approaches: enumerated access control (EAC), chain- of-communication tokens (CCT), and chain-of-trust assertions (CTA). A cost model was developed to estimate the additional cost of restricting visibility in a baseline traceability system and the estimates were used to compare the approaches and to discuss the trade-offs.

		The ability to accurately localize passive UHF RFID tags in uncontrolled
		and unstructured environments is limited by multi-path propagation.
		Therefore, in order to increase the spatial resolution of RF based
		localization methods it is necessary to combine them with addition
		sensing capabilities. In this work we enhance passive LIHE REID tags
		sensing capabilities. In this work we emanded passive one keine had
		with LEDS, using the wireless identification and sensing platform
		(WISP). This allows both humans and computer systems (with
		cameras) to optically locate tagged items with millimeter accuracy. In
		order to show the effectiveness of this approach, a PR2 robot is
		equipped with an EPC Gen2 RFID reader and camera. Using the reader
		only the PR2 is able to identify and coarsely locate tagged items in an
	Optical Localization of	unstructured environment. Once the robot has navigated to the
	Passive UHF RFID Tags	vicinity of the LED enhanced passive RFID tags, it uses the optical
23	with Integrated LEDs	location method to autonomously grash tagged items from a table
		Fully implantable wireless biotelemetry devices have traditionally used
		active VHE/LHE transmitters or load modulation at HE frequencies. HE
		active vnr/Onr transmitters of load modulation at hr frequencies. Hr
		systems tend to be bandwidth- innited due to low frequency magnetic
		coupling, while active VHF/UHF transmitters generally consume a
		significant amount of power in DC bias current. We show in this paper
		that UHF near-field backscatter can be used to achieve higher data
		rates at lower implant power budgets. We present experimental path
		loss measurements in a saline proxy system using a segmented loop
		antenna designed for UHF near-field operation. We present
		experimental results from a modulated backscatter test circuit at bit
		rates of up to 30 Mbps and penetration depths of up to 6 cm. The
	Near Field Modulated	main communication element, an RF switch, consumes about 164 μA
	Backscatter For In	at 3 V while operating at a data rate of 30 Mbps, which is equivalent to
24	Vivo Biotelemetry	approximately 16.4 pJ/bit.
	, , , , , , , , , , , , , , , , , , , ,	Power transfer between tag chip and tag antenna plays a critical role
		in determining the performance of passive UHE REID systems.
		However optimum power transfer is difficult to achieve due to
		narasitic canacitance introduced during the tag assembly process
		Moreover, the parasitic capacitance loads to performance deviation
		and tag detuning. Thus it is highly desired to determine the peresitie
		and tag detuning. Thus it is nightly desired to determine the parasitic
		capacitance before initializing tag antenna design. This paper presents
		a fast and quantitative method to evaluate the parasitic capacitance.
		The method is established based on a lumped-element model of
		double-tuned tags and the corresponding expression of the power
		transfer coefficient. Simulation and measurement results are provided
	Evaluation of Parasitic	to verify the purposed method. For strap-packaged Alien Higgs-3 chip
	Capacitance	and embedded T-match antenna assembled with an anisotropic
1	Introduced during Tag	conductive adhesive, the parasitic capacitance is demonstrated to be

		We describe a low power vector backscatter modulator capable of transmitting 16-QAM at a rate of 96 Mbps while consuming only 1.49 mW (15.5 pJ/bit). While designed around a center frequency of 915 MHz, the modulator is capable of operation over the worldwide 868 - 950 MHz UHF band. We present experimental results from the modulator operating in 4-QAM/4-PSK, 4-PAM, and 16-QAM modes. Achieved data rates are comparable to WiFi (IEEE 802.11) with a measured tag-side power consumption over 50 times lower than a WiFi chipset. Potential applications for low power, high bit rate modulators include biotelemetry, high-bandwidth data transfer from camera tags or audio tags, uplink from mass storage tags, and
	A 96 Mbit/sec,	exchange of large amounts of encryption or authentication data. Given
	15.5µJ/bit 10-QAM Modulator for LIHE	(battery-assisted) prototype tag is return link limited and has a
	Backscatter	theoretical maximum operating range of 17.01 m at 96 Mbps or 21.25
26	Communication	m at 40 Mbps.
27	A Fully Integrated Chip-ID Tag Used in Chip Information	A fresh and creative passive UHF RFID tag, which can be referred to as "Chip-ID tag", has been proposed in this paper. The fully integrated Chip-ID tag, fabricated on the same substrate of the identified SOC, can be used for the SOC chip information identification, such as the chip manufacturer, function and series number identification, etc. The Chip-ID tag without OCA can be implemented as small as a PAD. OCA can be embedded in the periphery of the identified SOC chip or outside the ring of bonding pad. In order to guarantee the maximum power transmission between the reader antenna and the OCA tag, theoretical and experimental analysis between reader antenna and Chip-ID tag have been presented for verifying the feasibility of the proposed Chip-ID tag in this work. Finally, a Chip-ID tag with 4 mm x 4 mm single-turn square loop OCA, including the identified SOC chip, is successfully designed and taped out in 0.18-um CMOS technology. Measurement results demonstrate that the Chip-ID tag can be powered up and then transmit a unique Chip-ID data to the single-turn loop reader antenna with diameter of 1 cm by 110 KHz full-ASK clock signals modulation in complete contact circumstances, when the reader transmit a minimum RF input power of -9 dBm at 915-MHz band. The maximum reading range of 1.3 cm can be achieved with 20 dBm RF input power by the reader generated. It is worth emphasizing that, within all published papers, this paper is the first time to put forward a self-contained, CMOS-only Chip-ID tag for the SOC chip information identification.
21		The optimization of wireless power transmission for sensors
	Effects of Periodic Reinforced-Concrete Structures on Power	embedded in reinforced concrete structures are studied here. Computational methods are applied to investigate the transmission and reflection coefficients for reinforced concrete slabs as a function of concrete slab thickness and rebar configurations at different frequencies. Electric field induced inside reinforced concrete is also examined. Specifically, these analysis lead to the identification of
28	Transmission	optimum conditions for wireless powering of sensors embedded in

reinforced concrete for structural health monitoring.